The bondage numbers and efficient dominations of vertex-transitive graphs
نویسندگان
چکیده
منابع مشابه
The bondage numbers and efficient dominations of vertex-transitive graphs
The bondage number of a graph G is the minimum number of edges whose removal results in a graph with larger domination number.A dominating setD is called an efficient dominating set ofG if |N−[v]∩D|=1 for every vertex v ∈ V (G). In this paper we establish a tight lower bound for the bondage number of a vertex-transitive graph. We also obtain upper bounds for regular graphs by investigating the ...
متن کاملEfficient domination in cubic vertex-transitive graphs
An independent set of vertices S of a graph dominates the graph efficiently if every vertex of the graph is either in S or has precisely one neighbour in S. In this paper we prove that a connected cubic vertex-transitive graph on a power of 2 vertices has a set that dominates it efficiently if and only if it is not isomorphic to a Möbius ladder. This is a preprint of an article accepted for pub...
متن کاملVertex-transitive CIS graphs
A CIS graph is a graph in which every maximal stable set and every maximal clique intersect. A graph is well-covered if all its maximal stable sets are of the same size, co-well-covered if its complement is well-covered, and vertex-transitive if, for every pair of vertices, there exists an automorphism of the graph mapping one to the other. We show that a vertex-transitive graph is CIS if and o...
متن کاملThe bondage numbers of graphs with small crossing numbers
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number (G) ofG. Kang andYuan proved b(G) 8 for every connected planar graph G. Fischermann, Rautenbach and Volkmann obtained some further results for connected planar graphs. In this paper, we generalize their results ...
متن کاملRoman bondage numbers of some graphs
A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman dominating function is the value f(G) = ∑ u∈V f(u). The Roman domination number of G is the minimum weight of a Roman dominating function on G. The Roman bondage number of a nonempty ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2008
ISSN: 0012-365X
DOI: 10.1016/j.disc.2007.03.027